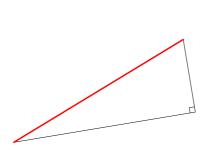
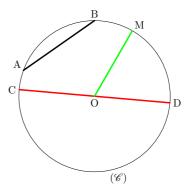
-G1--Triangle rectangle-

Dernière mise à jour le 4 juin 2015

Sommaire

1.0.1	Le point sur le programme	1
1.0.2	Rappels utiles aux preuves	1
1.0.3	Cercles et triangles	2
1.0.4	Théorème de Pythagore	5


1.0.1 Le point sur le programme


Connaissances	Capacités	Commentaires
3.1 Figures planes		
Triangle rectangle : théorème de Pythagore.	→Caractériser le triangle rectangle par l'égalité de Pythagore. →Calculer la longueur d'un côté d'un triangle rectangle à partir de celles des deux autres.	On ne distingue pas le théorème de Pythagore direct de sa réciproque (ni de sa forme contraposée). On considère que l'égalité de Pythagore caractérise la propriété d'être rectangle.
Triangle rectangle : cercle circonscrit.	 → Caractériser le triangle rectangle par son inscription dans un demi-cercle dont le diamètre est un côté du triangle. → Caractériser les points d'un cercle de diamètre donné par la propriété de l'angle droit. 	Le cas où le demi-cercle n'est pas apparent (la lon- gueur d'une médiane d'un triangle est la moitié de celle du côté correspondant) est étudié.

1.0.2 Rappels utiles aux preuves

<u>Définition 1</u>:

- \leadsto Un triangle ayant un angle droit est un $\mathbf{TRIANGLE}$ $\mathbf{RECTANGLE}.$
- → Son plus grand côté s'appelle HYPOTHÉNUSE .

Définition 2:

- → Un CERCLE est un ensemble de points équidistants d'un point fixe, son centre.
- → Cette distance commune entre le centre et un point du cercle s'appelle RAYON.
- → Une CORDE est un segment qui joint deux points du cercle.
- → Un DIAMÈTRE est une corde qui passe par le centre.

<u>Définition</u> 3:

- \leadsto Le CERCLE CIRCONSCRIT à un triangle ABC est le cercle passant par les trois sommets du triangle.
- \leadsto Le triangle ABC est dit <u>inscrit</u> dans le cercle (\mathscr{C}), si le cercle (\mathscr{C}) est circonscrit au triangle ABC.

Propriété 1 : (admise)

Les trois médiatrices d'un triangle sont concourantes en un point qui est le centre de son cercle circonscrit

Propriété 2 : (admise)

Si les diagonales d'un quadrilatère se coupent en leur milieu alors c'est un parallélogramme

Propriété 3 : (admise)

Si un parallélogramme a un angle droit

alors c'est un rectangle

Propriété 4 : (admise)

Si un quadrilatère a ses diagonales qui se coupent en leur milieu ET de même longueur

alors c'est un rectangle

Propriété 5 : (admise)

Si un quadrilatère est un rectangle

alors ses diagonales se coupent en leur milieu et ont la même longueur

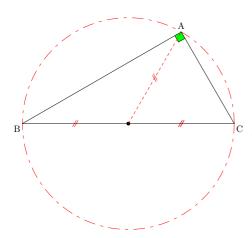
1.0.3 Cercles et triangles

Cercle circonscrit à un triangle rectangle

Propriété 6:

Les propriétés suivantes sont équivalentes :

- 1/ si un triangle est rectangle alors son cercle circonscrit a pour centre le milieu de l'hypoténuse et pour diamètre l'hypoténuse de ce triangle.
- 2/ si un triangle est rectangle alors la médiane issue du sommet de l'angle droit a pour longueur la moitié de l'hypoténuse.


Preuve:

Considérons un triangle rectangle.

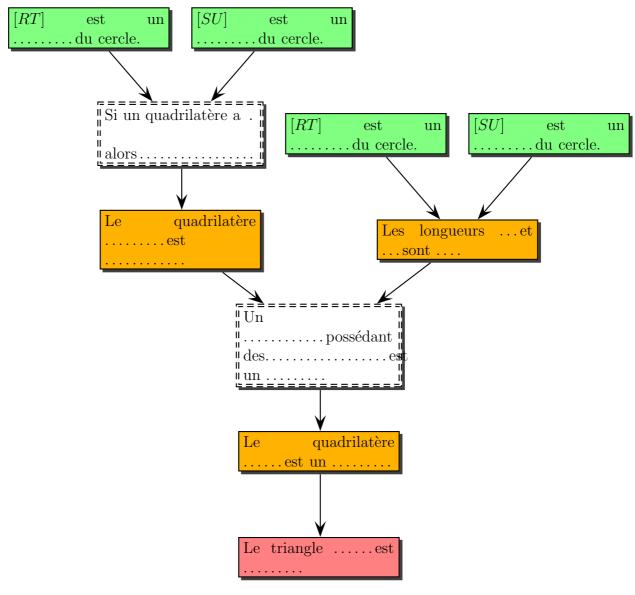
Pour fixer les idées nommons-le originalement ABC et supposons qu'il soit rectangle en A. Soit M le milieu de son hypoténuse et A' le symétrique de A par rapport à M.

- → Puisque [AA'] et [BC] ont le même milieu alors ABA'C est un parallélélogramme (propriété 2)
- → Puisque le parallélélogramme ABA'C a un angle droit alors c'est un rectangle (propriété 3)
- → Puisque ABA'C est un rectangle alors ses diagonales ont le même milieu (grande nouvelle ici!) et sont de même longueur.
- → Donc M est finalement équidistant des points A, B, A' et C donc c'est bien le centre du cercle circonscrit au triangle rectangle ABC. □

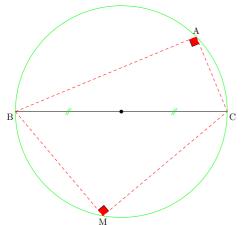
Exemple:

Comme le triangle ABC est rectangle en A alors A appartient au cercle de diamètre [BC].

Triangle rectangle inscrit dans un cercle


Propriété 7 : (admise)

Les propriétés suivantes sont équivalentes :


- 1/ si l'on joint un point d'un cercle aux extrémités d'un diamètre de ce cercle alors on obtient un triangle rectangle.
- 2/ si un triangle est inscrit dans un cercle de diamètre l'un de ses côtés alors ce triangle est rectangle et admet ce diamètre comme hypoténuse.
- 3/ Si, dans un triangle, la longueur de la médiane relative à un côté est égale à la moitié de la longueur de ce côté alors ce triangle est rectangle et admet ce côté pour hypoténuse.

Pour la preuve on peut utiliser un organigramme :

- 1/ Quelles sont les données de la propriété à prouver? Fais une figure qui correspond à ses données :
 - \rightarrow Trace un cercle de centre O et de rayon 4 cm et [RT] un de ses
 - \rightsquigarrow Place un point S sur lede centre O.
 - \rightsquigarrow Construis le point U, diamètralement opposé au point S.
- 2/ Complète l'organigramme de démonstration ci-dessous.

Dans un cercle, on obtient un triangle rectangle en.....

Comme A est un point du cercle de diamètre [BC] alors le triangle ABC est rectangle en A.

Comme M est un point du cercle de diamètre [BC] <u>alors</u> le triangle MBC est rectangle en M.

1.0.4 Théorème de Pythagore

Théorème direct

Préliminaires

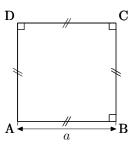
<u>Définition 4</u>: Le **carré** d'un nombre (positif) est le produit du nombre par lui-même.

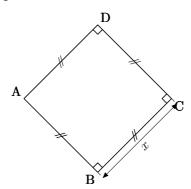
$$a^2 = a \times a$$

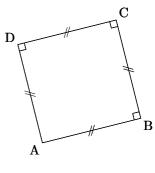
Exemples:

$$\rightsquigarrow 7^2 = 7 \times 7 = 49$$

$$\rightarrow$$
 $(-5)^2 = (-5) \times (-5) = 25$


$$\rightsquigarrow 5^2 = 5 \times 5 = 25 \text{ aussi!}$$


$$\rightsquigarrow 81 = 9 \times 9 = 9^2$$


 \rightsquigarrow 36 est le carré de 6 car $6 \times 6 = 36$

 \rightarrow 12 est la racine carrée de 144 car $12 \times 12 = 144$ et que 12 est positif.

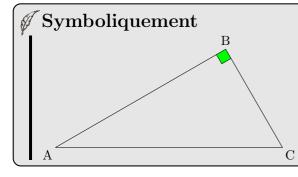
Dans chacun des cas suivants, exprime l'aire des carrés en fonction de leur côté.

$$A_{ABCD} = \dots$$

$$A_{ABCD} = \dots$$

$$A_{ABCD} = \dots$$

$$A_{ABGD} =$$

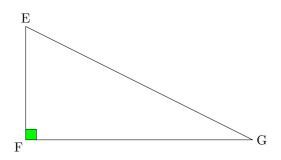

$$A_{ABCD} = \dots$$

$$A_{ABCD} = \dots$$

Enoncé du théorème

Propriété 8 : (admise)

Si un triangle est rectangle, alors le carré de l'hypoténuse est égal à la somme des carrés des deux côtés de l'angle droit.



Dans le triangle ABC rectangle en B, le théorème de Pythagore permet d'écrire la **relation de Pythagore** suivante :

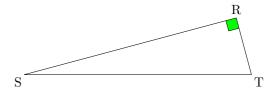
$$AC^2 = AB^2 + BC^2$$

Applications : calcul de la longueur...

...de l'hypoténuse

Dans le triangle EFG rectangle en F, le théorème de Pythagore permet d'écrire

$$EG^{2} = EF^{2} + FG^{2}$$


$$EG^{2} = 6^{2} + 8^{2}$$

$$EG^{2} = 36 + 64$$

$$EG^{2} = 100$$

$$EG = 10$$

...d'un côté de l'angle droit

Dans le triangle RST rectangle en R, le théorème de Pythagore permet d'écrire

$$ST^{2} = SR^{2} + RT^{2}$$

$$9^{2} = 7^{2} + RT^{2}$$

$$81 = 49 + RT^{2}$$

$$RT^{2} = 81 - 49$$

$$RT^{2} = 32$$

$$RT = \sqrt{32}$$

$$RT \approx 5,66$$

La longueur EG mesure $10 \, cm$.

La longueur RT mesure environ 5, 66 cm.

On appelle **racine carrée** d'un nombre positif a, le nombre positif, noté \sqrt{a} , tel que son carré soit égal à a.

 $\left(\sqrt{a}\right)^2 = a$

Réciproque et contraposée du théorème de Pythagore

En français:

Propriété : (Réciproque)

Si dans un triangle, le carré du plus grand côté est égal à la somme des carrés des deux autres côtés

alors ce triangle est rectangle

Symboliquement:

<u>Propriété 9</u> : Dans un triangle ABC tel que [BC] soit le plus grand côté

$$Si BC^2 = AC^2 + AB^2$$

alors le triangle ABC est rectangle en A.

Exemple:

Est-ce que le triangle RST tel que $RS=3\,cm,\,ST=4\,cm$ et $TR=5\,cm$ est un triangle rectangle ?

Dans le triangle RST, [RT] est le plus grand côté.

Comme $TR^2=RS^2+ST^2$, <u>le triangle RST est rectangle en S</u> d'après la réciproque du théorème de Pythagore.

En français:

Propriété : (Contraposée)

Si dans un triangle, le carré du plus grand côté n'est pas égal à la somme des carrés des deux autres côtés

alors ce triangle n'est pas rectangle

Symboliquement:

Propriété 10: Dans un triangle ABC tel que [BC] soit le plus grand côté

Si $BC^2 \neq AC^2 + AB^2$

alors le triangle ABC n'est pas rectangle.

Est-ce que le triangle EHI tel que $EH=10,5\,cm,\,EI=8\,cm$ et $HI=6\,cm$ est un triangle rectangle?

1/ Première façon de rédiger :

Dans le triangle EHI, [EH] est le plus grand côté.

donc d'après la contraposée du théorème de Pythagore le triangle EHI n'est pas un triangle rectangle.

2/ Seconde façon de rédiger :

Dans le triangle EHI, [EH] est le plus grand côté.

or, si le triangle était rectangle, d'après le théorème de Pythagore on aurait égalité Donc le triangle EHI n'est pas un triangle rectangle.